<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>大気李算を用いたガスタービン冷却技術の研究</td>
</tr>
<tr>
<td>著者</td>
<td>小田 豊</td>
</tr>
<tr>
<td>引用</td>
<td>理工学と技術 関西大学理工学会誌 = Engineering & Technology, 21: 25-28</td>
</tr>
<tr>
<td>発行日</td>
<td>2014-11-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10112/9469</td>
</tr>
<tr>
<td>ライセンス</td>
<td></td>
</tr>
<tr>
<td>型式</td>
<td>部門別論文</td>
</tr>
<tr>
<td>リテラリティ</td>
<td></td>
</tr>
</tbody>
</table>
Large Eddy Simulation を用いたガスタービン冷却技術の研究

小 田 豊*

A Study on Gas Turbine Cooling Technology Using Large Eddy Simulation

Yutaka Oda

1. はじめに

ガスタービンは小型軽量でも高出力が得られるという特長から、航空機用ジェットエンジンや火力発電用ガスタービンとして利用されている。主な構成要素は圧縮機、燃焼器、ターピンであり、吸入した大気を圧縮機で約20気圧まで圧縮し、燃焼器で燃料を注入して燃焼させることにより高温・高圧ガスを発生させ、それをターピン内で急激に膨張・加速させ、タービンを回転させることで動力を外部へ取り出す。

エネルギー利用効率の観点から、ガスタービンにはより少ない燃料でより大きな出力を得ること、すなわち熱効率の向上が求められる。ガスタービンの熱効率を上げる有効な方法として、ターピン入口温度（TIT: Turbine Inlet Temperature）を上昇させる方法がある。最新の大型発電用ガスタービンではTITが1600℃に到達し、排気回収ボイラを利用した蒸気タービンとのコンバインドサイクル発電の熱効率は61％に達している。

一方、このように高いTITのガスタービンでは、燃焼器やタービンといった高温部品の温度が冷却状態では許容温度を超えないよう、長時間の運転に耐えられず、腐食を引き起こしてしまう。そのため、ガスタービンの燃焼器やタービン翼に対しては様々な冷却手法が開発、導入されている。冷却媒体には圧縮機から抽選された空気が利用されるが、冷却空気流量（＝抽気量）の増加は出力の低下につながるため、冷却効率の向上が求められている。タービン翼の冷却方式は、タービン翼を内部から冷やす「内部冷却」と、タービン翼表面から冷却空気を吹き出すことで翼表面に空気の薄い層を形成し、高温の燃焼ガスから守る「外部冷却」に分かれる。また、燃焼器はガスタービンエンジンを構成する要素の中で作動ガスの温度が最も高い部位であり、燃焼器に関わる熱的な損傷としては燃焼器壁の減肉や座屈、クリープ変形やクラックがある。これらを防ぐためには適切な方法で、燃焼器壁を冷却することが必要となる。

これらの冷却技術の開発には、タービン内外や燃焼器内の熱流動の情報が得ることが重要となる。この際、風洞を用いた要素試験が基本となるが、測定点が限定されるなど得られるデータに限りがあり、近年の冷却技術の開発では、数値シミュレーションの役割が重要性を増している。ガスタービン内部の流れは乱流状態にあるため、RANS（Reynolds Averaged Navier–Stokes Simulation）やLES（Large Eddy Simulation）を用いた速度場や温度場の数値解析が重要な役割を果たす。このうち、RANSはレイノルズ平均された輸送方程式を解析対象とし、式中に新たに生じるレイノルズ応力や乱流熱流束（またはそれら自身の輸送方程式）をモデル化して解くことで、時間平均された速度場や温度場を得る手法であり、計算負荷が低いことから今日まで広く利用されてきた(1)。しかしながら、レイノルズ応力や乱流熱流束は、乱流場の全てのスケールの渦運動が平均場を与える統計的な乱流輸送効果を表すために、これを表現する普遍的な乱流モデルの構築は難しいとされる。これまでに、多くの研究者によって予測性能の著しい向上が達成されてきたものの、あらゆる乱流場に適用可能なモデルは存在していない(2)。
他方、LESは普遍的なモデルの構築が期待される計算格子スケール以下（Sub Grid Scale, SGS）の等方的な渦のみをモデル化の対象とし、格子スケール以上（Grid Scale, GS）の渦を直接計算するため、RANSによる高精度な予測が難しい複雑を伴う複雑乱流域の速度場、温度場の予測においても高い性能を発揮する。LESは乱流中の非定常な渦運動を時間発展的に解くため、RANSに基づいて長時間の計算が必要になるが、ガスタービン冷却技術のさらなる性能向上には、高度な情報に基づいた精細な設計が求められており、LESへの期待は大きい。これに加え、近年の計算機性能の向上は著しく、研究開発の現場におけるLESの活用は今後大きく進展し、近い時期に設計開発の現場にもLESが急速に普及すると考えられる。

以下ではその応用例の一つとして、ジェットエンジン燃焼器のライナー冷却を想定したビンフィン流路の伝熱性能の予測事例を紹介する。

2. ジェットエンジン燃焼器のライナー冷却

ジェットエンジン燃焼器のライナー冷却に適用されるビンフィン冷却の性能向上は、高温部品の長寿命化、即ちライフサイクルコストの低減につながる。また、冷却空気流量の減少は、希薄混合燃焼に供する空気流量の増加につながるため、NOx排出低減の観点からも重要である。通常、ビン材には減衰率が低いニッケル基耐熱合金が使用されており、フィン効率の低下を防ぐために、ビン高さと直径の比は小さくなる傾向にある。このため、伝熱伝における寄与はビン表面よりも基板面（エンドウォール）が大きく、冷却性能の向上には基板面の伝熱促進が重要となる。ビン基板面の伝熱促進にはビン間でのリップ付設と傾斜ビンフィンが有効であることが知られており、著者らは圧力損失を低減しつつ必要な伝熱性能を確保できるビンフィン流路形状として、傾斜ビンフィンと波状下壁面の組み合わせに着目して研究を進めてきた。これまでもに、下壁面のみ（ビン表面は断熱条件）を対象としたナフタレン昇華法による実験とLES解析が実証され、ビンフィン基板面上の伝熱伝に限定した場合には、基板面の形状がボンチも動力当たりの伝熱性能を促進することを実験的に示し、対応するLES解析が実験結果を良く再現することを示している（図1、図2）。しかし、実機で重要となるビンフィン表面からの放熱を含めた熱流体条件を再現することが困難であるためには、ビンフィン内の伝熱伝含めた熱流体解析が必要となる。この場合、ビンフィン内伝热伝導と外部熱流動の時間スケールが大きく異なることから、LESを用いた非定常の熱流体解析で時間平均の伝熱伝やフィン効率を算出することは現実的ではない。他方で、RANSによる熱流体解析ではビンフィン流路内の複雑乱流域の予測精度が十分でない可能性がある。著者はこれらの問題を解決する手段として、LESで得られる高精度な平均速度場と乱流統計値に基づいて、熱流体解析を行う手法を開発中である。この手法は、まず始めに流体部を対象としたLESを行い、得られた乱流統計値から局所の乱流エネルギーをその散逸係数を熱流体解析に投入する。次に、乱流プラントル数を一定と仮定する

図1 ビンフィン界面の伝熱伝達率分布の測定（ナフタレン昇華法とLESの比較）

効率を算出することは現実的ではない。他方で、RANSによる熱流体解析ではビンフィン流路内の熱流体条件が十分でない可能性がある。著者はこれらの問題を解決する手段として、LESで得られる高精度な平均速度場と乱流統計値に基づいて、熱流体解析を行う手法を開発中である。この手法は、まず始めに流体部を対象としたLESを行い、得られた乱流統計値から局所の乱流エネルギーをその散逸係数を熱流体解析に投入する。次に、乱流プラントル数を一定と仮定する
図2 LESによるピンフィン底部の熱伝達率分布（時間平均、瞬時値、RMS値）

図3 熱伝達解析によるピンフィン表面の温度分布と熱伝達率分布

ことにより、局所の渦熱拡散係数を算出し、LESで得られた平均速度場の下で、RANSのエネルギー式を解くことで、熱連成場における温度場を予測した。

図3に底面が波状面の場合について熱連成解析で得たピンフィン表面の温度分布と熱伝達率分布（Nu分布）を示す。このような熱連成解析を行うことで、より正確な平均速度分布、渦粘性係数に基づいて流体部分と固体部分（ピンフィン）の温度場を決定でき、ピンフィンの温度分布を考慮した上でピンフィン表面からの放熱量を予測することができる。この方法をピン基板面が平坦の場合にも適用し、底面とピン面、その和である全伝熱面における平均Nuを算出し、流状面の場合と伝熱量を比較したところ、従来のLESと同様、底面の伝熱促進に関しては底面の波状化が有効であることが分かった。これは、底面を流状化することにより、傾斜ピンフィン背面の根本部からピン背面に沿って上方に向かう流れが誘起されることで、ピン背後部の死水域が減少することにより平底面で見られた低Nu領域が減少すること、ならびに、波状面の頂上部からの剥離・再付着流れによる底面上の伝熱促進効果のためである。この波状面におけるピン背後の死水域の減少は、ピンフィン流路の流動抵抗の大部分を占める圧力抵抗の低減に効果があり、流状化に基づう伝熱面積の増加によって加わる摩擦抵抗や剥離に伴う圧力抵抗の増加分を相殺し、流量条件によっては平底面とはほぼ同等の圧力損失を実現することが分かっている。
3. まとめ

本稿ではガスタービンの冷却技術の開発で重要性を増しつつある熱流体シミュレーション技術のうち、著者が提案するLESに基づいた複雑乱流場の熱伝成解析手法を紹介し、この手法により傾斜ビンフィン流路の底面波状化による伝熱促進効果が確認できたことを示した。本手法は今後ますます産業界での普及が期待されるLESを用いた数値解析のボスト処理の一環として位置づけることができ、LESの効果的な利用法として検証の価値があると思われる。

謝辞

本研究はNEDO（新エネルギー・産業技術総合開発機構）の研究助成を受けて、武石賢一郎先生（当時大阪大学、現徳島文理大学）、三宅慶明先生（当時三菱重工業、現愛知工業大学）、森合秀樹氏（三菱重工業）と共同で行ったものです。ここに記して謝意を表します。

参考文献

(1) 須賀一彦, 日本流体力学会数値流体力学部門 Web会誌, 第11巻, 第2号, (2003), pp.73-80.
(2) 笠木伸也[編著], 乱流工学ハンドブック, 初版 (2009), 朝倉書店.