関西大学学術リポジトリ >
1100 学部・機構・専門職大学院 >
総合情報学部 >
情報研究 : 関西大学総合情報学部紀要 >
情報研究 : 関西大学総合情報学部紀要 -第38号 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10112/7756

Title: 多数目的非線形ナップザック問題の応用と可視化
Other Titles: Application and Visualization of the Many-objective Nonlinear Knapsack problem
Authors: 仲川, 勇二
ノーマン・D, クック
上島, 紳一
林, 武文
井浦, 崇
Author's alias: NAKAGAWA, Yuji
Norman D., COOK
UESHIMA, Shinichi
HAYASHI, Takefumi
IURA, Takashi
Keywords: 組み合わせ最適化
多目的
多数目的
非線形ナップザック
可視化
Combinational Optimization
Many-objective Optimization
Multi-objective Optimization
Visualization
Issue Date: 31-Mar-2013
Publisher: 関西大学総合情報学部
Shimei: 情報研究 : 関西大学総合情報学部紀要
Volume: 38
Start page: 23
End page: 34
Abstract: 非線形ナップザック問題(分離形非線形離散最適化問題)は,よく知られたナップザック問題をその特殊な場合として含み応用範囲が広いにも関わらず,研究者は非常に少ない.本稿では,非線形ナップザック問題の研究の歴史を概観し,その拡張形である多目的非線形ナップザック問題(目的関数が4 個以上の多数目的の場合を含む)の厳密解法を説明し,多目的非形ナップザック問題の実用化についても考察する.また,多目的最適化の場合,複数の評価基準を取り扱うことが必要であり多目的最適化問題を解いて得られたパレート解集合の個々の解は互いに一長一短の特性をもつ.このパレート解の集合から意思決定者にとって最も良い解を選択するために役立つ可視化の技術について提案する.Nonlinear knapsack problems, which are also called “separate nonlinear discrete optimization problems,” include the(0‒1)knapsack problem, which is well known as a special case. Of course the application range of the nonlinear knapsack problem is wide, but the number of researchers is very few. In this paper, we describe a general view of the history of the research on the nonlinear knapsack problem. We explain the exact method for solving multi-objective nonlinear knapsack problems, which is an extension of the nonlinear knapsack problem and includes four or more objective functions. Practical usages of the multi-objective nonlinear knapsack problem are considered. Furthermore, we handle two or more criteria of multi-objective optimization problems when we solve the multi-objective optimization problem. Each of the obtained Pareto solutions, which have characteristic merits and demerits, is evaluated by using multiple criteria. We propose a visualization technology, which a decision-maker uses in choosing the best compromised solution out of these Pareto solutions.
type: Departmental Bulletin Paper
URI: http://hdl.handle.net/10112/7756
ISSN: 1341156X
NCID: AN10484636
Text Version: publisher
Appears in Collections:情報研究 : 関西大学総合情報学部紀要 -第38号

Files in This Item:

File Description SizeFormat
KU-1100-20130331-03 (1).pdf611.21 kBAdobe PDF
View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback Terms and Conditions of Use PAGE TOP